153 research outputs found

    SHADHO: Massively Scalable Hardware-Aware Distributed Hyperparameter Optimization

    Full text link
    Computer vision is experiencing an AI renaissance, in which machine learning models are expediting important breakthroughs in academic research and commercial applications. Effectively training these models, however, is not trivial due in part to hyperparameters: user-configured values that control a model's ability to learn from data. Existing hyperparameter optimization methods are highly parallel but make no effort to balance the search across heterogeneous hardware or to prioritize searching high-impact spaces. In this paper, we introduce a framework for massively Scalable Hardware-Aware Distributed Hyperparameter Optimization (SHADHO). Our framework calculates the relative complexity of each search space and monitors performance on the learning task over all trials. These metrics are then used as heuristics to assign hyperparameters to distributed workers based on their hardware. We first demonstrate that our framework achieves double the throughput of a standard distributed hyperparameter optimization framework by optimizing SVM for MNIST using 150 distributed workers. We then conduct model search with SHADHO over the course of one week using 74 GPUs across two compute clusters to optimize U-Net for a cell segmentation task, discovering 515 models that achieve a lower validation loss than standard U-Net.Comment: 10 pages, 6 figure

    Flexible Session Management in a Distributed Environment

    Full text link
    Many secure communication libraries used by distributed systems, such as SSL, TLS, and Kerberos, fail to make a clear distinction between the authentication, session, and communication layers. In this paper we introduce CEDAR, the secure communication library used by the Condor High Throughput Computing software, and present the advantages to a distributed computing system resulting from CEDAR's separation of these layers. Regardless of the authentication method used, CEDAR establishes a secure session key, which has the flexibility to be used for multiple capabilities. We demonstrate how a layered approach to security sessions can avoid round-trips and latency inherent in network authentication. The creation of a distinct session management layer allows for optimizations to improve scalability by way of delegating sessions to other components in the system. This session delegation creates a chain of trust that reduces the overhead of establishing secure connections and enables centralized enforcement of system-wide security policies. Additionally, secure channels based upon UDP datagrams are often overlooked by existing libraries; we show how CEDAR's structure accommodates this as well. As an example of the utility of this work, we show how the use of delegated security sessions and other techniques inherent in CEDAR's architecture enables US CMS to meet their scalability requirements in deploying Condor over large-scale, wide-area grid systems

    UK-Wide Multicenter Evaluation of Second-line Therapies in Primary Biliary Cholangitis

    Get PDF
    Background &amp; aims: thirty-to-forty percent of patients with primary biliary cholangitis inadequately respond to ursodeoxycholic acid. Our aim was to assemble national, real-world data on the effectiveness of obeticholic acid (OCA) as a second-line treatment, alongside non-licensed therapy with fibric acid derivatives (bezafibrate or fenofibrate).Methods: this was a nationwide observational cohort study conducted from August 2017 until June 2021.Results: we accrued data from 457 patients; 349 treated with OCA and 108 with fibric acid derivatives. At baseline/pre-treatment, individuals in the OCA group manifest higher risk features compared with those taking fibric acid derivatives, evidenced by more elevated alkaline phosphatase values, and a larger proportion of individuals with cirrhosis, abnormal bilirubin, prior non-response to ursodeoxycholic acid, and elastography readings &gt;9.6kPa (P &lt; .05 for all). Overall, 259 patients (OCA) and 80 patients (fibric acid derivatives) completed 12 months of second-line therapy, yielding a dropout rate of 25.7% and 25.9%, respectively. At 12 months, the magnitude of alkaline phosphatase reduction was 29.5% and 56.7% in OCA and fibric acid groups (P &lt; .001). Conversely, 55.9% and 36.4% of patients normalized serum alanine transaminase and bilirubin in the OCA group (P &lt; .001). The proportion with normal alanine transaminase or bilirubin values in the fibric acid group was no different at 12 months compared with baseline. Twelve-month biochemical response rates were 70.6% with OCA and 80% under fibric acid treatment (P = .121). Response rates between treatment groups were no different on propensity-score matching or on sub-analysis of high-risk groups defined at baseline.Conclusion: across the population of patients with primary biliary cholangitis in the United Kingdom, rates of biochemical response and drug discontinuation appear similar under fibric acid and OCA treatment.</p

    Practical resource monitoring for robust high throughput computing

    Get PDF
    Abstract-Robust high throughput computing requires effective monitoring and enforcement of a variety of resources including CPU cores, memory, disk, and network traffic. Without effective monitoring and enforcement, it is easy to overload machines, causing failures and slowdowns, or underutilize machines, which results in wasted opportunities. This paper explores how to describe, measure, and enforce resources used by computational tasks. We focus on tasks running in distributed execution systems, in which a task requests the resources it needs, and the execution system ensures the availability of such resources. This presents two non-trivial problems: how to measure the resources consumed by a task, and how to monitor and report resource exhaustion in a robust and timely manner. For both of these tasks, operating systems have a variety of mechanisms with different degrees of availability, accuracy, overhead, and intrusiveness. We describe various forms of monitoring and the available mechanisms in contemporary operating systems. We then present two specific monitoring tools that choose different tradeoffs in overhead and accuracy, and evaluate them on a selection of benchmarks

    Noise Line Identification in LIGO S6 and Virgo VSR2

    Full text link
    An important goal for LIGO (the Laser Interferometer Gravitational-Wave Observatory) and Virgo is to find periodic sources of gravitational waves. The LIGO and Virgo detectors are sensitive to a variety of noise of non-astrophysical origin, such as instrumental artifacts and environmental disturbances. These artifacts make it difficult to know when a signal is due to a gravitational wave or noise. A continuous wave search algorithm, Fscan, and the calculation of the coherence between the gravitational wave channels and auxiliary channels has been developed to identify the source of noise lines. The programs analyze data from the gravitational wave channels as well as environmental sensors, searching for significant lines that appear in coincidence (using various thresholds and frequency windows) in the gravitational wave channel as well the environmental monitors. By this method, the source of powerful signals at specific frequencies in the gravitational wave channel caused by noise can be determined. Examples from LIGO's sixth science run, S6, and Virgo' second scientific run, VSR2, are presented.Comment: 9 pages, 4 figures, 14th Gravitational Wave Data Analysis Workshop (Rome, Italy

    Characterizing low-sulfide instrumented waste-rock piles: image grain-size analysis and wind-induced gas transport

    Get PDF
    This study is part of the Diavik Waste-Rock Pile Project taking place at the Diavik Diamond Mine in the Northwest Territories, Canada. The project involves the construction of three 15m-scale low sulfide test waste-rock piles and monitoring of fluid flow, geochemical reactions, heat and gas transport within the waste-rock piles and characterization of the physical properties of the waste-rock piles. The focus of this thesis is characterizing grain-size distribution of the waste-rock and quantifying gas transport in the test waste-rock piles. Grain size of waste rock ranges from millimeters to meters. Sieve analysis typically only provides information of grain size 0.1 m and employs a region-growing algorithm for segmentation of waste-rock grains with pre- and post-processing techniques to improve the accuracy of segmentation. The program was applied to photographs of six different tip faces of the test waste-rock piles. For grain size <0.1 m, data from sieve analyses were attached to the grain-size curves generated from image grain-size analyses to obtain a full spectrum grain-size analyses ranging from boulders to fines. The results show that fine fractions are retained at the top of the tip faces and grain size increases non-linearly from top to bottom of a waste-rock pile. Calculations show that although the greatest mass is associated with the medium and coarse fractions, the greatest surface area is associated with the fine fractions. The results are consistent with field observation that the initial solute concentrations are greatest at the top of the pile and saturated hydraulic conductivity are lower at the top of the pile than in the pile interior. Statistical moments show that the test waste-rock piles have mean grain size of granules and are very poorly sorted, coarse skewed and leptokurtic. Permeability is calculated using empirical formulae and good agreement is obtained between calculated values and field measurements. The heterogeneity of grain size obtained from this study can provide a basis for future modeling efforts. Gas transport analysis focused on 1) substantiating the relationship between wind flow external to the waste-rock pile and gas pressures within the pile, 2) determining the gas flow regime in the pile, and 3) quantifying the temporal variation in wind speed and direction and determining the relevant time scales. Differential gas pressures were measured in 2008 at 49 locations within one of the three test waste-rock piles and 14 locations on the surface of the pile at one-minute intervals. Wind speed and direction were measured at 10-min intervals. Correlations between wind vectors and pressure measurements show that the wind influences pressure fluctuations in the test pile. The strength of the correlation is roughly inversely proportional to the distance between measurement ports and the atmospheric boundary. The linear relationship between internal pressure measurements and surface pressure measurements demonstrate that gas flow is Darcian within the test waste-rock pile. Spectral analysis of wind data and a one-dimensional analytical solution to the flow equations show that the persistence of wind in a certain direction has most pronounced effects on transient gas flow within the pile. The penetration depth of wind-induced gas pressure wave is a function of the periodicity of the wind and permeability of the waste-rock pile

    ‘A Girl's Love’: Lord Alfred Douglas as Homoerotic Muse in the Poetry of Olive Custance

    Get PDF
    This is an Accepted Manuscript of an article published by Taylor & Francis in Women: a Cultural Review on 15/09/2011, available online: http://dx.doi.org/10.1080/09574042.2011.585045.This article explores the relationship between the poet Olive Custance and her husband Lord Alfred Douglas, arguing that Custance constructed Douglas as a male muse figure in her poetry, particularly the sequence ‘Songs of a Fairy Princess’ (Rainbows 1902). The introduction sets out Custance's problematic historical positioning as a ‘decadent’ poet who published nothing following the Great War, but whose work came too late to fit into strictly ‘fin de siècle’ categories. I suggest, however, that Custance's oscillating constructions of gender and sexuality make her more relevant to the concerns of modernity than has previously been acknowledged and her work anticipates what is now termed ‘queer’. The first main section of the article traces the cultural background of the fin de siècle male muse, arguing that Custance's key influences—male homoerotic writers such as Wilde and Pater—meant it was logical that she should imagine the muse as male, despite the problems associated with gender-reversals of the muse-poet relationship which have been identified by several feminist critics. I then move on to focus specifically on how Shakespearean discourses of gender performance and cross-dressing played a key role in Custance and Douglas's courtship, as they exchanged the fluid roles of ‘Prince’, ‘Princess’ and ‘Page’. The penultimate section of the article focuses on discourses of fairy tale and fantasia in Custance's ‘Songs of a Fairy Princess’ sequence, in which these fantasy roles contribute to a construction of Douglas as a feminised object, and the relationship between the ‘Prince’ and ‘Princess’ is described in terms of narcissistic sameness. My paper concludes by tracing the demise of Custance and Douglas's relationship; as Douglas attempted to be more ‘manly’, he sought to escape the role of object, resulting in Custance losing her male muse. But her sexually-dissident constructions of the male muse remain important experiments worthy of critical attention
    • …
    corecore